Transistors

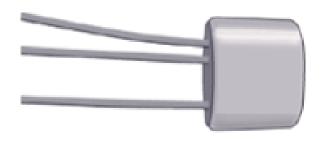
AJLONTECH

Lecture Overview

- What is a Transistor?
- History
- Types
- Characteristics
- Applications

What is a Transistor?

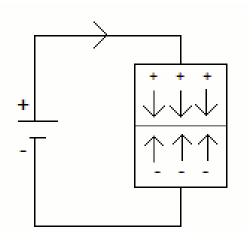
- Semiconductors: ability to change from conductor to insulator
- Can either allow current or prohibit current to flow
- Useful as a switch, but also as an amplifier
- Essential part of many technological advances

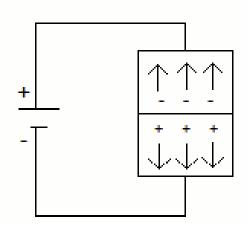

A Brief History

- Guglielmo Marconi invents radio in 1895
- Problem: For long distance travel, signal must be amplified
- Lee De Forest improves on Fleming's original vacuum tube to amplify signals
- Made use of third electrode
- Too bulky for most applications

The Transistor is Born

- Bell Labs (1947): Bardeen,
 Brattain, and Shockley
- Originally made of germanium
- Current transistors made of doped silicon

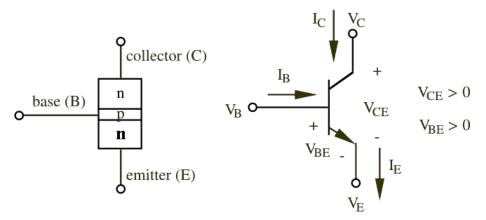


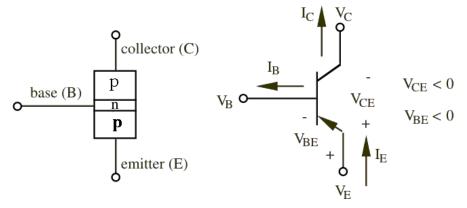

How Transistors Work

- Doping: adding small amounts of other elements to create additional protons or electrons
- P-Type: dopants lack a fourth valence electron (Boron, Aluminum)
- N-Type: dopants have an additional (5th) valence electron (Phosphorus, Arsenic)
- Importance: Current only flows from P to N

Diodes and Bias

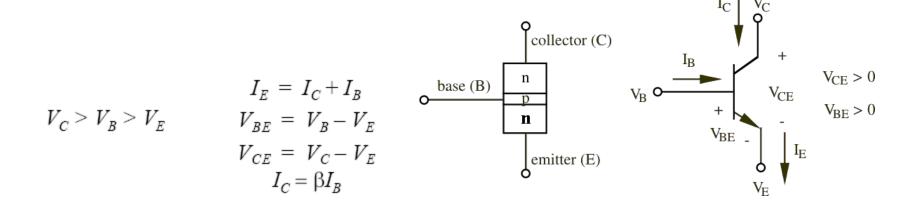
- Diode: simple P-N junction.
- Forward Bias: allows current to flow from P to N.
- Reverse Bias: no current allowed to flow from N to P.
- Breakdown Voltage: sufficient N to P voltage of a Zener Diode will allow for current to flow in this direction.




Bipolar Junction Transistor (BJT)

- 3 adjacent regions of doped Si (each connected to a lead):
 - Base. (thin layer,less doped).
 - Collector.
 - Emitter.
- 2 types of BJT:
 - npn.
 - pnp.
- Most common: npn (focus on it).

Developed by Shockley (1949)


npn bipolar junction transistor

pnp bipolar junction transistor

BJT npn Transistor

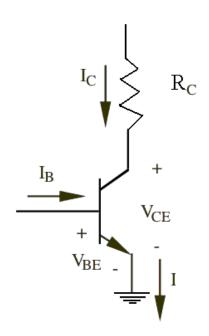
- 1 thin layer of p-type, sandwiched between 2 layers of n-type.
- N-type of emitter: <u>more heavily doped</u> than collector.
- With V_C>V_B>V_E:
 - Base-Emitter junction forward biased, Base-Collector reverse biased.
 - Electrons diffuse from Emitter to Base (from n to p).
 - There's a <u>depletion layer</u> on the Base-Collector junction → no flow of e⁻ allowed.
 - BUT the Base is thin and Emitter region is n⁺ (heavily doped) →
 electrons have enough momentum to cross the Base into the Collector.
 - The small base current I_B controls a large current I_C

BJT characteristics

Current Gain:

- α is the fraction of electrons that diffuse across the narrow Base region
- 1- α is the fraction of electrons that recombine with holes in the Base region to create base current
- The current Gain is expressed in terms of the **B** (beta) of the transistor (often called h_{fe} by manufacturers).
- <u>β (beta)</u> is Temperature and Voltage dependent.
- It can vary a lot among transistors (common values for signal BJT: 20 - 200).

$$I_{C} = \alpha I_{E}$$


$$I_{B} = (1 - \alpha)I_{E}$$

$$\beta = \frac{I_{C}}{I_{E}} = \frac{\alpha}{1 - \alpha}$$

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$$

npn Common Emitter circuit

- Emitter is grounded.
- Base-Emitter starts to conduct with $V_{BE}=0.6V$, I_C flows and it's $I_C=\beta*I_B$.
- Increasing I_B , V_{BE} slowly increases to 0.7V but I_C rises exponentially.
- As I_C rises, voltage drop across R_C increases and V_{CE} drops toward ground. (transistor in saturation, no more linear relation between I_C and I_B)

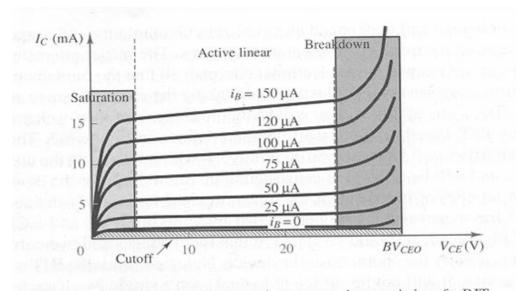
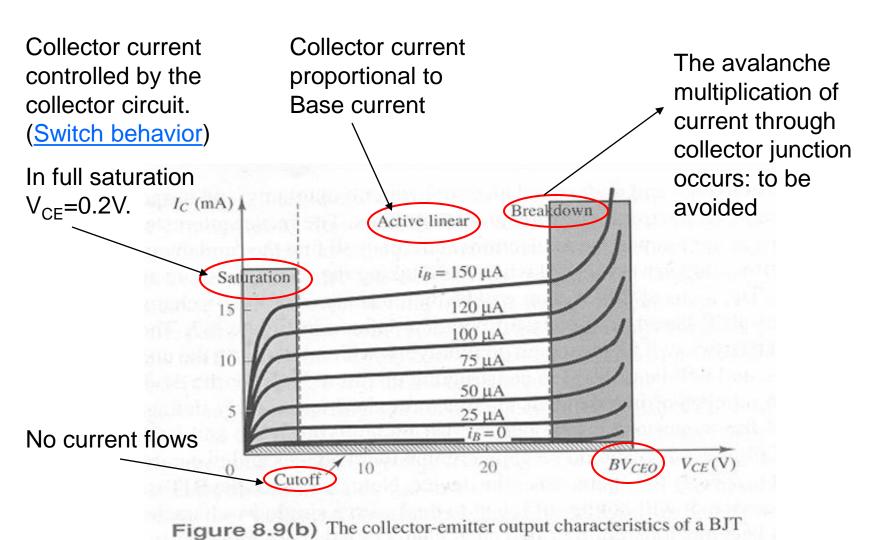
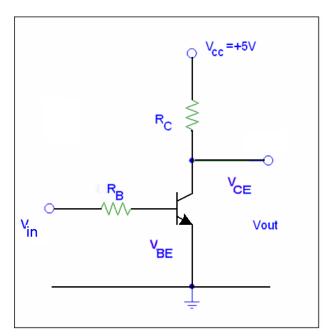
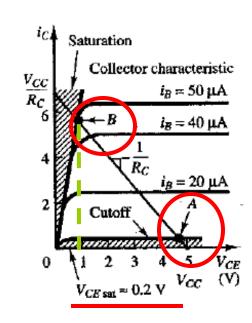



Figure 8.9(b) The collector-emitter output characteristics of a BJT

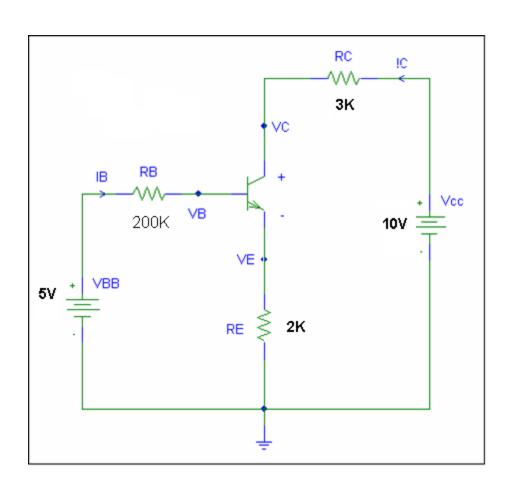

Common Emitter characteristics

Operation region summary


Operation Region	I _B or V _{CE} Char.	BC and BE Junctions	Mode
Cutoff	I _B = Very small	Reverse & Reverse	Open Switch
Saturation	V _{CE} = Small	Forward & Forward	Closed Switch
Active Linear	V _{CE} = Moderate	Reverse & Forward	Linear Amplifier
Break- down	V _{CE} = Large	Beyond Limits	Overload

BJT as Switch

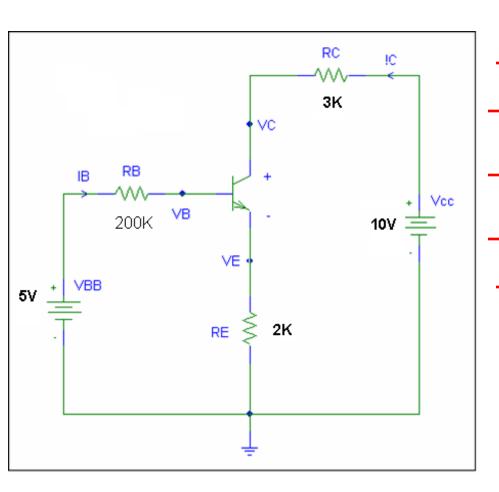
- $\bullet \underline{V}_{in}(Low) < 0.7 V$
 - •BE junction <u>not</u> forward biased
 - Cutoff region
 - No current flows
 - $\bullet V_{out} = V_{CE} = V_{cc}$
- $\bullet \underline{V}_{out} = High$


- • $\underline{V}_{in}(High)$
 - •BE junction forward biased (V_{BE}=0.7V)
 - Saturation region
 - •V_{CE} small (~0.2 V for saturated BJT)
 - •V_{out} = small
 - $\bullet I_B = (V_{in} V_B)/R_B$
- $\bullet \underline{V}_{out} = Low$

BJT as Switch 2

- Basis of digital logic circuits
- Input to transistor gate can be analog or digital
- Building blocks for <u>TTL</u> Transistor Transistor Logic
- Guidelines for designing a transistor switch:
 - $-V_C>V_B>V_E$
 - $V_{BE} = 0.7 V$
 - I_C independent from I_B (in saturation).
 - Min. I_B estimated from by $(I_{Bmin} \approx I_C/\beta)$.
 - Input resistance → such that I_B > 5-10 times I_{Bmin} because β varies among components, with temperature and voltage and R_B may change when current flows.
 - Calculate the max I_C and I_B not to overcome device specifications.

BJT as Amplifier



- Common emitter mode
- Linear Active Region
- Significant current Gain

Example:

- •Let Gain, $\beta = 100$
- •Assume to be in active region -> V_{BE} =0.7V
- •Find if it's in active region

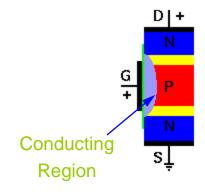
BJT as Amplifier

$$\begin{split} \underline{V_{BE}} &= 0.7V \\ I_E &= I_B + I_C = (\beta + 1)I_B \\ I_B &= \frac{V_{BB} - V_{BE}}{R_B + R_E * 101} = \frac{5 - 0.7}{402} = 0.0107 mA \\ I_C &= \beta * I_B = 100 * 0.0107 = 1.07 mA \\ \underline{V_{CB}} &= V_{CC} - I_C * R_C - I_E * R_E - V_{BE} = \\ &= 10 - (3)(1.07) - (2)(101 * 0.0107) - 0.7 = \\ &= 3.93V \end{split}$$

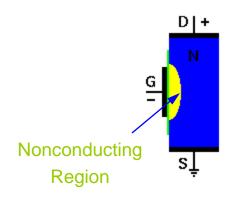
V_{CB}>0 so the BJT is in active region

Field Effect Transistors

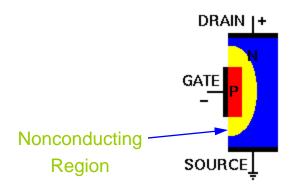
- In 1925, the fundamental principle of FET transistors was establish by Lilienfield.
- 1955: the first Field effect transistor works
- Increasingly important in mechatronics.
- Similar to the BJT:
 - Three terminals,
 - Control the output current


BJT Terminal	FET Terminal	
Base	Gate	
Collector	Drain	
Emitter	Source	

Field Effect Transistors


- Three Types of Field Effect Transistors
 - MOSFET (metal-oxide-semiconductor fieldeffect transistors)
 - JFET (Junction Field-effect transistors)
 - MESFET (metal-semiconductor field-effect transistors)
- Two Modes of FETs
 - Enhancement mode
 - Depletion mode
 - The more used one is the n-channel enhancement mode MOSFET, also called NMOS

FET Architecture


☐ Enhanced MOSFET

■ Depleted MOSFET

□ JFET

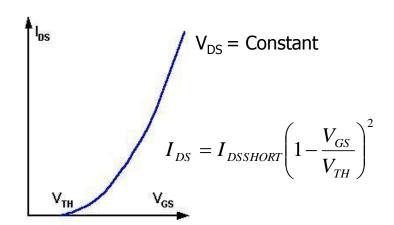
NMOS Voltage Characteristic

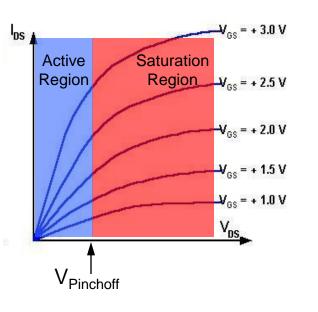
$$V_{GS} < V_{th}$$

$$I_{DS}=0$$

$$V_{GS} > V_{th}$$
:

 $0 < V_{DS} < V_{Pinch off}$


Active Region I_{DS} controlled by V_{GS}


V_{DS} > V_{Pinch off}

Saturation Region I_{DS} constant

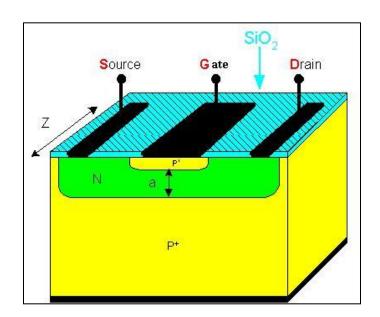
V_{DS} > V_{Breakdown}

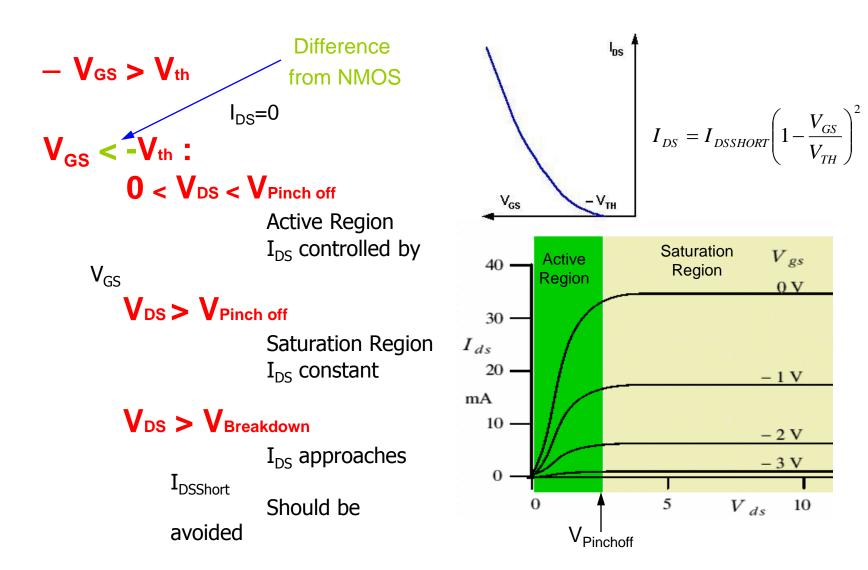
I_{DS} approaches I_{DSShort} Should be avoided

NMOS uses

- High-current voltage-controlled switches
- Analog switches
- Drive DC and stepper motor
- Current sources
- Chips and Microprocessors

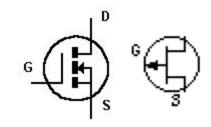
CMOS: Complementary fabrication


JFET overview


The circuit symbols:

JFET design:

Junction Field Effect Transistor


10

JFET uses

- Small Signal Amplifier
- Voltage Controlled Resistor
- Switch

FET Summary

- General:
 - Signal Amplifiers
 - Switches

JFET:

For Small signals

Low noise signals

Behind a high impedence system
Inside a good Op-Ampl.

MOSFET:

Quick Voltage Controlled Resistors RDS can be really low: 10 mOhms

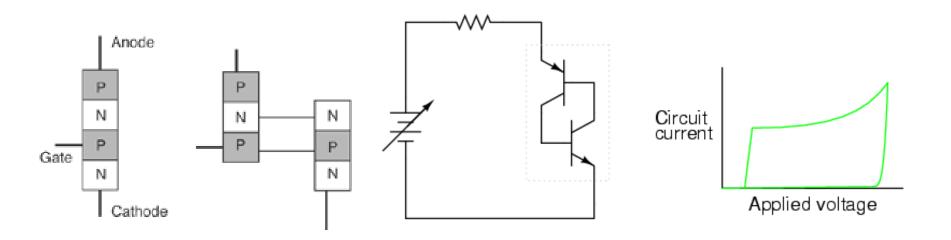
Power Transistors

- In General
 - Fabrication is different in order to:
 - Dissipate more heat
 - Avoid breakdown
 - So Lower gain than signal transistors
- BJT
 - essentially the same as a signal level BJT
 - Power BJT cannot be driven directly by HC11
- MOSFET
 - base (flyback) diode
 - Large current requirements

Other Types of Transistors

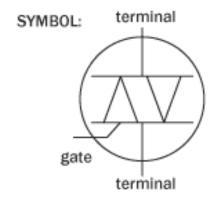
Typical transistor packages

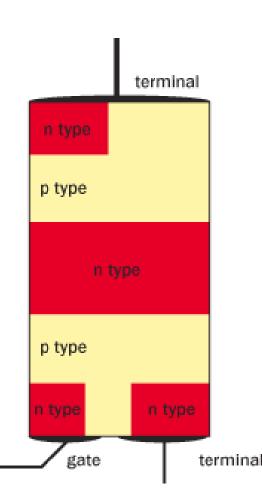
Various Types of Transistors


TempFET – MOSFET's with temperature sensor

 High Electron Mobility Transistors (HEMTs) – allows high gain at very high frequencies

 Darlington – two transistors within the same device, gain is the product of the two inidvidual transistors


Shockley Diode/Thyristor


- Four-layer PNPN semiconductor devices
- Behaves as two transistors in series
- Once on, tends to stay on
- Once off, tends to stay off

TRIAC

- Triode alternating current switch
- Essentially a bidirectional thyristor
- Used in AC applications
- Con: Requires high current to turn on
- Example uses: Modern dimmer switch

References

- www.lucent.com
- http://transistors.globalspec.com
- http://www.kpsec.freeuk.com
- www.Howstuffworks.com
- www.allaboutcircuits.com
- Previous student lectures